MEDICILON

contact us krjpencn

뉴스현황

Press Events

현재 위치: > 뉴스현황 > Press Events > Isolating Anti-Alzhe...

Isolating Anti-Alzheimer's Compounds in Plants

저자:   업로드:2017-06-23  조회수:

    Traditional plant medicines have been used by humans for a long time, and these therapies are still popular in many countries. Plants typically contain a huge variety of compounds, many of which have no effect in the body, and some which can have significant effects.  However isolating specific efficacious molecules from the milieu of compounds that constitute most plant species can be a daunting task. Now, researchers at the University of Toyama, Japan have developed a method to isolate and identify active compounds in plant medicines, which accurately accounts for drug behavior in the body.




    New data which published recently in Frontiers in Pharmacology in an article entitled, “A Systematic Strategy for Discovering a Therapeutic Drug for Alzheimer's Disease and Its Target Molecule”, demonstrate that a new technique identifies several active compounds from Drynaria rhizome, a traditional plant medicine, that improve memory and reduce disease characteristics in a mouse model of Alzheimer's disease.


    Typically, scientists will repeatedly screen crude plant medicines in lab experiments to see if any compounds show an effect on cells grown in vitro. If a compound shows a positive effect in cells or test tubes, it could potentially be used as a drug, and the scientists go on to test it in animals. However, this process is laborious and doesn't account for changes that can happen to drugs when they enter the body—enzymes in the blood and liver can metabolize drugs into various forms called metabolites. Additionally, some areas of the body, such as the brain, are difficult to access for many drugs, and only certain drugs or their metabolites will enter these tissues.


    "The candidate compounds identified in traditional benchtop drug screens of plant medicines are not always true active compounds because these assays ignore biometabolism and tissue distribution," explained senior study investigator Chihiro Tohda, Ph.D., associate professor of neuropharmacology at the University of Toyama. "So, we aimed to develop more efficient methods to identify authentic active compounds that take these factors into account."


    In the study, the Toyama team used mice with a genetic mutation as a model for Alzheimer's disease. This mutation gives the mice some characteristics of Alzheimer's disease, including reduced memory and a buildup of specific proteins in the brain, called amyloid and tau proteins.


    “We report a systematic strategy for evaluating the bioactive candidates in natural medicines

이전:Skin Microbiome Can Be Negatively Altered by Topical Antibiotics

다음에:New Immune System Finding May Open Door to Novel Cancer Therapies