MEDICILON

contact us krjpencn

뉴스현황

Press Events

현재 위치: > 뉴스현황 > Press Events > Anchors Provide Nove...

Anchors Provide Novel Way to Hijack Superbugs

저자:   업로드:2016-05-19  조회수:

    Scientists at Monash University of Australia may have found a way to stop deadly bacteria from infecting patients. The discovery could lead to a whole new way of treating antibiotic-resistant "superbugs." The researchers have uncovered what may be an Achilles heel on the bacteria cell membrane that could act as a potential novel drug target.


    The Monash team focused on urinary tract infections because almost 50% of women will suffer at least one infection during their lifetime, primarily caused by Escherichia coli. The bacterium travels along the urethra to the bladder where it triggers painful infections. To colonize the bladder efficiently—which is constantly being flushed out with urine—bacteria have developed a series of nanofilaments, called fimbriae or attachment pili, that effectively anchor the bacteria to the walls of the urinary tract.


    The study investigators found that a specific protein called translocation and assembly module (TAM) was essential for the assembly of the anchoring filaments. Moreover, the researchers describe how they developed an assay to measure the assembly of the filament-forming protein, called an usher.


    “Using our assay we tested whether blocking TAM had any effect on usher,” explained senior study author Trevor Lithgow, Ph.D., professor at the Biomedicine Discovery Institute within Monash University. “What we found was that TAM is required for the assembly of usher and therefore for the production of the filaments needed to anchor the bacteria to the urinary tract surface."


    The findings from this study were published recently in Nature Microbiology in an article entitled “Effective Assembly of Fimbriae in Escherichia coli Depends on the Translocation Assembly Module Nanomachine.”


    The assay revealed that, under normal circumstances, E. coli can create filaments within 2 minutes of sensing the urinary tract environment. However, when TAM is blocked, it can take up to 4 hours for the same anchoring process to happen.


    “We report that a rapid response in usher assembly is crucially dependent on the translocation assembly module,” the authors wrote. “We assayed the assembly reaction for a range of ushers and provide mechanistic insight into the β-barrel assembly pathway that enables the rapid deployment of bacterial fimbriae.”


    The scientists also noted that the discovery of how TAM impacts the E. coli's ability to latch onto the wall of the urinary tract could be a very important target for drug therapy.


이전:Stem Cell Factor Boosts Cardiovascular Protection

다음에:Altering the Microbiome Improves Stress Resistance and Coping Responses