MEDICILON

contact us krjpencn

뉴스현황

Press Events

현재 위치: > 뉴스현황 > Press Events > Carbohydrates May Be...

Carbohydrates May Be the Key to a Better Malaria Vaccine

저자:   업로드:2017-09-19  조회수:

    The importance of glycosylation for protein drugs and vaccines has been well established, as companies spend millions of dollars either isolating or creating the appropriate glycosylated form of their desired compound, for increasing efficacy and extend the half-life of the drug. Yet, for the malaria parasite Plasmodium falciparum, researchers have often discounted carbohydrate moieties, since the parasite lacks much of the machinery to create the complex glycosylation patterns similar to other eukaryotic organisms.


    However now, an international team of researchers led by investigators at the Walter and Eliza Hall Institute (WEHI) has just shown that carbohydrates on the surface of malaria parasites play a critical role in malaria's ability to infect both mosquito and human hosts. Moreover, the researchers suggest steps that may improve the only malaria vaccine approved to protect people against Plasmodium falciparum, the deadliest form of malaria. Findings from the new study were published today in Nature Communications in an article entitled “Protein O-Fucosylation in Plasmodium falciparum Ensures Efficient Infection of Mosquito and Vertebrate Hosts.”


    "Malaria parasites have a complex lifecycle that involves constant shapeshifting to evade detection and infect humans and subsequently mosquitoes," explained senior study investigator Justin Boddey, Ph.D., associate professor and laboratory head at WEHI. "We found that the parasite's ability to 'tag' key proteins with carbohydrates is important for two stages of the malaria life cycle.”




    “It is critical for the earliest stages of human infection when the parasite migrates through the body and invades in the liver, and later when it is transmitted back to the mosquito from an infected human, enabling the parasite to be spread among people,” Dr. Body added. "Interfering with the parasite's ability to attach these carbohydrates to its proteins hinders liver infection and transmission to the mosquito, and weakens the parasite to the point that it cannot survive in the host."


    With close to half of the world’s population living in areas endemic for malaria—causing 200 million cases annually and 650,000 deaths—efforts to eradicate the disease require the development of new therapeutics, particularly an effective malaria vaccine. The first malaria vaccine approved for human use—RTS,S/AS01—was approved by European regulators in July 2015, but has not been as successful as hoped, with marginal efficacy that wanes over time.


    "The protein used in the RTS,S vaccine mimics one of the proteins we've been studying on the surface of the malaria parasite that is readily reco

이전:Fat-Modifying Enzyme May Be Key to Cancer and Metabolic Diseases

다음에:Love Handles Get Dissolved by New Skin Patch